Fuzzy Logic Controller Based Excitation Synchronous Wind Power Generators With Maximum Power Tracking Scheme

Suresh babu Ganjikunta
CVSR College Of Engineering(Autonomous), Ghatkesar, Affiliated To JNTUH, Hyderabad
E-mail id:
suresh.spsm@gmail.com

Vijaya kumar Itham
CVSR College Of Engineering(Autonomous), Ghatkesar, Affiliated To JNTUH, Hyderabad
E-mail id:
vijayakumar687@gmail.com

Abstract - This paper presents a novel excitation synchronous wind power generator (ESWPG) with a maximum power tracking scheme. The excitation synchronous generator and servo motor rotor speed tracks the grid frequency and phase using the proposed coaxial configuration and phase tracking technologies. The generator output can thus be directly connected to the grid network without an additional power converter. The proposed maximum power tracking scheme governs the exciter current to achieve stable voltage, maximum power tracking, and diminishing servo motor power consumption with fuzzy logic controller. The system transient and static responses over a wide range of input wind power are examined using simulated software. Experimental results from a laboratory prototype ESWPG demonstrate the feasibility of the proposed system.

Index Terms—Excitation synchronous generator, maximum power tracking, servo motor control, wind power.

INTRODUCTION

The global market demand for electrical power produced by renewable energy has steadily increased, explaining the increasing competitiveness of wind power technology. Wind power generators can be divided into induction and synchronous types [1]–[8]. The excitation synchronous generator driven by hydraulic, steam turbine, or diesel engines has been extensively adopted in large-scale utility power generation owing to desired features such as high efficiency, reliability, and controllable output power. A wind power generator in grid connection applications, except for doubly fed induction generators, achieves these features using variable speed constant frequency technology. However, most excitation synchronous wind generators cannot be connected directly to the grid, owing to instabilities in wind power dynamics and unpredictable properties that influence the generator synchronous speed.

The direct drive permanent magnet synchronous wind generator (PMSWG) uses variable speed and power converter technologies to fulfill the grid connection requirements, which has advantages of being gearless. Various power transfer technologies are applied for ac/dc transformation to obtain a constant frequency ac power. However, extensive use of power electronic devices in those systems that will cause unavoidable power losses from the rectifier’s conducting resistance and high-frequency power switches, which will increase power consumption. Therefore, a converterless method for a high-efficiency excitation synchronous wind generator is an important issue, especially for middle and high output voltage wind power generators. This paper presents a novel converterless wind power generator with a control framework that consists of an excitation synchronous generator, permanent magnet (PM) synchronous servo motor, signal sensors, and servo control system with fuzzy logic controller. The wind and servo motor powers are integrated with each other and transmitted to the excitation synchronous generator via a coaxial configuration. When the wind speed varies, the servo motor...
provides a compensatory energy to maintain constant generator speed. The additional servo motor power is also transformed into electricity, and output into the load. This means that the motor power is not wasted. Using a precise phase tracking function design, the proposed robust integral servo motor control scheme reduces the output voltage phase shift in the excitation synchronous generator from wind disturbances. According to the servo motor power magnitude and the generator power, the proposed maximum power tracking scheme controls the excitation field current to ensure that the excitation synchronous generator fully absorbs the wind power, and converts it into electricity for the loads. Based on physical theorems, a mathematical model for the proposed system is established to evaluate how the control function performs in the designed framework. The detailed structure and experimental results will be discussed in the following sections.

II POWER FLOW AND SPEED

For simplicity, assume that all energy transmission elements behave ideally, allowing us to ignore the mechanical power losses of the wind turbine, the servo motor, and the excitation synchronous generator. Fig. 1 shows the power flows of the proposed system, where T_w, T_m, and T_g denote the torques and ω_w, ω_m, and ω_g are the wind turbine, servo motor, and excitation synchronous generator speeds, respectively. The total excitation synchronous generator input power is the product of and the power flow equation can thus be defined as

$$T_g \cdot \omega_g = T_w \cdot \omega_w + T_m \cdot \omega_m \quad (1)$$

Fig. 2. Proposed coaxial construction configuration.

Fig. 2 shows the corresponding coaxial configuration. The wind generator rotor shaft input-end receives rotating torques from the speed increasing gear box. The tail-end of the generator rotor shaft is coupled with a servo motor. The input energy of the excitation synchronous generator is the sum of the wind power and servo motor powers. The speed and rotating direction for the wind turbine output, servo motor, and excitation synchronous generator is the same, i.e., the system speeds satisfy $\omega_w = \omega_m = \omega_g$. This arrangement can reduce the power transmission losses.

III CONTROL PRINCIPLES OF PROPOSED WIND POWER GENERATOR SYSTEM

Fig. 3 depicts the control framework of the proposed system. The control system design concepts maintain power flow balance between the input and the output and, simultaneously, force the generator frequency to synchronize with the utility grid. When the system complies with these conditions, the generator output can be connected to the utility grid network, subsequently reaching the high efficiency and maximum power tracking objectives. The control signals, including the generator voltage, current, grid phase, motor encoder, and output power, are sensed and transferred to the microprocessor control unit (MCU). The servo motor controller plays an important role in output power and grid voltage phase tracking. A situation in which the controller detects a power increase from the servo motor implies decreasing wind speeds. At this moment, the system regulates the exciter current to reduce the excitation generator output power. A chain reaction subsequently occurs in which the servo motor power returns to a balanced level. During the energy balance periods, the servo motor consumes only a slight amount of energy to stabilize the shaft speed. Once (1) is satisfied, both the maximum power and the constant speed can be obtained by the designed control scheme.
Fig. 3. Proposed wind power system framework.

Fig. 4. Proposed wind power generator system.

Fig. 4 schematically depicts the servo motor and maximum power tracking control (MPTC) loops which are designed to stabilize the speed, frequency, and output power of the excitation synchronous generator under wind disturbances. The wind turbine provides mechanical torque to rotate the generator shaft via the speed-increasing gear box. As the generator shaft speeds reach the rated speed, the generator magnetic field is excited. The MPTC then controls the output voltage reaching grid voltage. Moreover, the generator output waveform is designed in phase with the grid using the servo motor control track grid sine waveform. Owing to the difficulty in precisely estimating the wind speed, the proposed MPTC scheme measures the motor output power as the reference signals to determine the generator output power. The excitation synchronous generator output frequency, voltage-phase, and output power are fed back into the control scheme. The phase/frequency synchronization strategy in Fig. 4 compares the grid voltage-phase and frequency with the generator’s feedback signals, and produces the position command with pulse-type signals to the servo motor driver. The MPTC also adjusts the excitation field current based on the wind power and motor power inputs, where denotes the servo motor rotor mechanical rotor angular displacement detected by an encoder. Due to the coaxial configuration, detecting the relative position of the rotor allows us to determine the generator voltage phase during the wind power generator system operating in the grid connection state. The following sections detail the system sub-blocks configuration.

IV SERVO MOTOR CONTROLLER DESIGN

The transient and dynamic responses of the servo motor controller must satisfy robustness requirements to reduce the influence of wind fluctuations to the generator. Thus, the robust integral structure control (RISC) method is chosen to ensure the voltage phase and the frequency in phase with the grid. Among general electrical motors, the three-phase PM synchronous motor has the advantages of high-efficiency and low-maintenance requirements, the reason controllable power for the servo control structure was chosen in the research [17]–[20]. This study designs an analysis model based on the electrical circuit, motor torque, and mechanical theorems. Fig. 5 shows the block diagram of the three-phase PM synchronous motor, and Table I lists the parameters of the PM synchronous motor. According to (1), wind power, generator power, and servo motor power can be transformed into three torque functions and incorporated in the three-phase PM synchronous motor model. The electromagnetic torque of the servo motor can be expressed as
\[T_m = p \lambda_m \left[I_U \sin \theta_r + I_V \sin \left(\theta_r - \frac{2}{3} \pi \right) + I_W \sin \left(\theta_r - \frac{4}{3} \pi \right) \right] \]

Fig. 6. Servo motor position control loops.

Where \(P \) denotes the number of motor poles, and \(I_U, I_V, \) and \(I_W \) are the applied stator currents. The mechanical torque \(T_m \) can be expressed as

\[T_m + (T_w - T_g) = J \left(\frac{2}{P} \right) \frac{d \omega_r}{dt} + B \left(\frac{2}{P} \right) \omega_r \]

\[\theta_r = \int \omega_r \, dt \]

\[\theta_m = \frac{2}{P} \theta_r. \]

(3)

Additionally \(\omega_r \) denotes the electrical rotor angular velocity; \(\theta_r \) represents the electrical rotor angular displacement \(\theta_m \); \(J \) is the mechanical rotor angular displacement; \(J \) is the rotor inertia; and \(B \) is the damping coefficient. In Fig. 5, \(L \) denotes the inductance of the stator windings; \(\lambda_m \) represents the amplitude of the flux linkage established by the permanent magnet as viewed from the stator windings; \(U_u, U_v, \) and \(U_w \) are the applied stator voltage of the motor; and \(R_a \) denotes the resistance of each stator winding. Moreover, \(T_0 = L/R_a \) is the electrical time constant, and \(T_m = J/B \) is the mechanical time constant. It is clear from the physical characteristics stated above that the motor electrical time constant is overwhelmingly lower than the mechanical time constant as \(T_0 << T_m \). The three-phase PM synchronous motor model can thus be simplified as a first-order mathematical model, as shown in Fig. 6. According to Fig. 6, the position control structure includes the RISC and servo motor transfer function. The conventional motor current feedback controller can avoid instantaneous current stress to the servo driver. This technology has been applied to the servo motor control to improve the control performance. The RISC outer loop is designed to achieve a fast and accurate servo tracking response under load disturbances and plant parameter variations. In Fig. 6, \(\theta_m \) denotes the position command. Parameters \(K_1 \) and \(K_3 \) are proportional gains and \(K_2 \) is the integral gain. The PM synchronous motor state equations are described as

\[x_1(t) = x_2(t) \]

\[x_2(t) = -a_1 x_1(t) - a_2 x_3(t) + b U(t) - T_l \]

(4)

Fig. 7. Phase tracking control scheme.

Where \(x_1 \) is \(\theta_r \) and \(x_2 \) is \(\omega_r \)

\[a_1 = 0 \]

\[a_2 = B + \frac{3 \pi \lambda_m^2}{4 J} \]

\[b = \frac{3 \pi C_k K_a \lambda_m}{4 J R_a + J C_k K_a} \]

\[T_l = \frac{1}{J} (T_w - T_g) \]

(5)

RISC is a typical state feedback control scheme that combines an integral controller and the plant series state feedback information. The RISC function is expressed as (6) and (7), where \(a_i, i=1,2 \) and \(b \) are the plant state variables and \(G_c \) is the current compensator for the current feedback loops. The pulselength modulation (PWM) circuit mode can be simplified as a constant gain \(K = V_{dc}/2E_d \), \(V_{dc} \) where denotes the supply voltage; \(E_d \) is the triangular waveform peak value; \(T_L \) refers to the total disturbance which is defined in (5), and \(U \) is the system control function. For a third RISC system, the control function \(U \) can be expressed as follows

\[U(s) = K_i K_2 K_3 \frac{\theta_{rmd}(s)}{s} - K_2 K_3 x_1 - K_3 x_2 \]
Transfer function of the system is

\[
\frac{x_1(S)}{\theta_{cmd}(S)} = \frac{K_1K_2K_3b}{s^3 + (a_2 + K_3b)s^2 + (a_1 + K_2K_3b)s + K_1K_2K_3b}
\]

(7)

By designing the system characteristic function to lie on the stable plane, one can obtain

\[
(S+\lambda_1)(S+\lambda_2)(S+\lambda_3)=0
\]

(8)

where \(\lambda_1, \lambda_2,\) and \(\lambda_3\) are the system selected close-loop poles. The characteristic function of (7) can then be rewritten as

\[
s^3 + (\lambda_1 + \lambda_2 + \lambda_3)s^2 + (\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3)s + \lambda_1\lambda_2\lambda_3 = 0
\]

(9)

The system control gain \(K_1, K_2,\) and \(K_3\) can be determined by (9) and the pole-zero placement method

\[
K_3 = \frac{(\lambda_1 + \lambda_2 + \lambda_3) - a_2}{b}
\]

\[
K_2 = \frac{(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3) - a_2}{b}
\]

\[
K_1 = \frac{\lambda_1\lambda_2\lambda_3}{K_2K_3b}
\]

(10)

V PHASE TRACKING CONTROL SCHEME

Fig. 7 depicts the proposed phase tracking control scheme. Before the excitation synchronous generator system connects to the grid (SW=0), \(\theta^*\) equals to the grid voltage angle. With the coaxial configuration described in Section II, the servo motor and generator electrical angle can be obtained using the motor encoder and the grid voltage sensor, respectively. The MCU compares the phase difference between the two signals, and gradually adjusts the excitation synchronous generator rotor position to reduce the phase deviation. Fig. 7 reveals that, while the proposed system contains a phase deviation \(\Delta\theta\), the deviation frequency \(\Delta f\) can be expressed as follows:

\[
\Delta f = K_{0f} \times \Delta\theta
\]

(11)

where, \(K_{0f}\) denotes a constant gain. The new pulse frequency \(f\) can be obtained as follows:

\[
f + \Delta f \rightarrow f
\]

(12)

The MCU generates pulse trains of frequency command \(f\) for the servo motor to drive the servo motor, explaining why the generator can lock the generator frequency and phase in the phase command. When the generator is connected to the grid (SW=1), \(\theta^*\) equals the generator current angle. MCU calculates the generator electrical angle and current phase angle difference to adjust the generator rotor position to reduce the phase deviation. Consequently, the generator power factor can be controlled and improved.

VI MAXIMUM POWER TRACKING CONTROL

![MPTC Control loops](image)

In a natural environment, the wind power varies with time. To stabilize the generator output voltage, current, and output power, the excitation synchronous generator output power has to track the input power variation and react immediately by adjusting the excitation field current. In this paper, a maximum power tracking control scheme is proposed. The proposed MPTC scheme includes two control loops as shown in Fig. 8, which is motor power control.
loop, and the generator power control loop. By MPTC scheme, it can make the motor consumption power minimize and most of wind power can be transferred to the grid by the generator. The control strategy describes as follows. As shown in Fig. 8, (1) can be rewritten as

\[P_{\text{gen-in}} = P_{w}(\omega_{w}) + P_{m} \]

(13)

where denotes the real wind input power, is the servo motor output power, is the excitation synchronous generator input power, and is the calculation motor power. If an air dynamic occurs in the wind turbine, the servo motor responds to this change for maintaining generator speed constant. The three-phase servo motor power is calculated and compared to the servo motor command. In this state, the servo motor command is set equal to zero. The servo motor deviation signal command passes by the motor power control loop to obtain the signal. As is expected, in the steady state, the servo motor consumes less power. One defines the generator power command as follows:

\[P^{*} = P_{\text{ref}}(\omega_{w}) + \Delta P_{m} \]

(14)

where denotes a rough wind power value which is estimated by the wind turbine pitch angle and the actual wind speed. In generator power control loop, the three-phase voltages, and currents of the excitation synchronous generator power output are fed back for comparison with the generator power command. This power deviation passing the PI controller and the excitation gain generates a corresponding excitation field current control signal. Thus the excitation synchronous generator output power can track the generator power command.

VII THREE-PHASE EXCITATION SYNCHRONOUS GENERATOR MODEL

For a typical three phases, four poles excitation synchronous generator, the generator output power is governed by the excitation controller, through the slip rings, with the appropriate excitation current sent to the armature winding. Based on the rotating magnetic field affection, the stator windings induce three-phase alternate voltages which have frequency in synchronization with the rotor speed. According to the conductor’s electromagnetism and the mechanical forces on the stator winding and rotor, the generator back electromotive force voltage can be defined as

\[E = l \omega_{g} \times B \]

(15)

where denotes the back electromotive force voltage of the excitation synchronous generator stator; represents the conductance magnet effective length; is the rotor speed; and is the magnetic field strength. The magnetic field strength can also be rewritten as

\[B = \frac{\mu_{0}}{l} I_{f} \]

(16)

where denotes the conductance magnet permeability coefficient represents the number of winding turns; and is the rotor current. Combining (14) and (15) yields

\[E = \mu N \omega_{g} I_{f} \]

(17)

Fig. 9. Three-phase excitation synchronous generator

Where,

\[I_{f}(s) = \frac{E_{f}(s)}{\frac{L_{f}}{s} + R_{f}} \]

(18)

Where denotes the excitation field control power; and represent the excitation field equivalent inductance and resistance, respectively. Considering the distribution of each magnetic field phase, in which the back electromotive force voltage must be multiplied by a corresponding sinusoidal signal. The excitation synchronous generator outputs for each back electromotive force voltage are described as follows:

\[E_{R} = \mu N \omega_{g} I_{f} \sin(\theta_{g}) \]

\[E_{S} = \mu N \omega_{g} I_{f} \sin(\theta_{g} + \frac{2}{3} \pi) \]

\[E_{T} = \mu N \omega_{g} I_{f} \sin(\theta_{g} + \frac{4}{3} \pi) \]

(19)
The generator back torque can be determined as follows:

$$T_g = \mu N_e I_f \left[I_R \sin(\theta_g) + I_S \sin\left(\theta_g + \frac{2}{3} \pi\right) + I_T \sin\left(\theta_g + \frac{4}{3} \pi\right)\right]$$ (20)

Fig. 9 shows a block diagram of the three-phase excitation synchronous generator between the excitation input current and the generator output according to (15)–(20)

VIII SIMULATION RESULTS

The generator design functionality is confirmed using a wind power generator framework simulation model with an excitation synchronous generator and its corresponding sub-systems, using MATLAB/Simulink and MATLAB/Simpower software. Subsystems include the wind power input, servo motor phase tracking control, maximum power tracking control, excitation synchronous generator, and grid connection. Tables I and II list the parameters of the PM synchronous motor, excitation synchronous generator, and Table III shows gains of the PI controller, respectively. To output the three-phase voltage signals at 60 Hz, the excitation synchronous generator must operate at 1800 rpm with 4-pole windings.

| TABLE II |
| PARAMETER OF EXCITATION SYNCHRONOUS GENERATOR |

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power output</td>
<td>3kW</td>
</tr>
<tr>
<td>Rated voltage output</td>
<td>AC 220V</td>
</tr>
<tr>
<td>Phase</td>
<td>3-phase</td>
</tr>
<tr>
<td>Pole</td>
<td>4-pole</td>
</tr>
<tr>
<td>Stator phase resistance (R_s, R_b, R_c)</td>
<td>0.17 Ω</td>
</tr>
<tr>
<td>Stator phase inductance (L_s, L_b, L_c)</td>
<td>4.3mH</td>
</tr>
<tr>
<td>Product of coefficient of conductance magnet and winding turn (μN)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

| TABLE III |
| GAINS OF PI CONTROLLER FOR MPTC |

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional gain (K_p1)</td>
<td>1</td>
</tr>
<tr>
<td>Integral gain (K_i)</td>
<td>10</td>
</tr>
<tr>
<td>Proportional gain (K_p2)</td>
<td>0.6</td>
</tr>
<tr>
<td>Integral gain (K_i2)</td>
<td>10</td>
</tr>
<tr>
<td>Excitation gain (K_f)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fig. 10. Simulation results. (a) Phase voltage and current of the excitation synchronous generator. (b) Voltage phase tracking

The voltage phase tracking performance of the system at generator output 2 kW is investigated. Fig. 10(a) shows the phase voltage and current waveforms of the excitation synchronous generator. Fig. 10(b) shows the grid and generator voltage phase tracking waveforms. The simulation voltage and current waveform s in Fig. 10(a) confirm that the proposed system has high quality power and sufficient control stability during grid connection. The generator output phase voltage is in phase with the grid in Fig. 10(b). Owing to the excitation synchronous generator rotation speed control and excitation control, the output power, voltage, and
frequency are constant. The wind power generator system can thus connect directly to the grid.

![Torque (N-m) Vs Time(s)](image)

(a)

![Acceleration (rad/sec^2) Vs Time(s)](image)

(d)

Fig. 11. Maximum power tracking simulation results. (a) Power tracking curves. (b) Generator input torque. (c) Shaft speed. (d) Shaft acceleration

For evaluating the system performance under grid connection, input wind with step changes were applied. In the beginning, 13 s of the simulation, a stable 2-kW wind power input is provided as shown in Fig. 11(a). At the 13th second, a step wind disturbance with amplitude was suddenly added to observe the power tracking condition. According to the simulation waveforms, the excitation synchronous generator output power was around 1.9 kW for 0–13 s. Thereafter, the wind power system tracked the input wind disturbance using the proposed maximum power tracking method. Simulation results indicate that, the average wind power input error and excitation synchronous generator input power was around 0.5% (10 W) of the generator output power during stable and disturbance periods. The 0.5% power deviation is due to the motor power consumption. This figure reveals an approximately 90-W power difference between the excitation synchronous generator input power and output power waveforms. This difference is because the excitation synchronous generator stator coil resistance and inductance influence the system power factor although those components consume little power. Fig. 11(b)–(d) illustrates the generator input torque, shaft speed, and shaft acceleration which run at the same simulation time with Fig. 11(a). Fig. 11 indicates that the proposed scheme can make the motor consumption power minimize and wind power can be fully transferred to the grid.

X CONCLUSION
This paper presented an excitation synchronous wind power generator with MPTC scheme. In the proposed framework, the servo motor provides controllable power to regulate the rotor speed and voltage phase under wind disturbance. Using a phase tracking control strategy, the proposed system can achieve smaller voltage phase deviations in the excitation synchronous generator. In addition, the maximum output power tracking scheme governs the input and output powers to achieve high performance with fuzzy logic. The excitation synchronous generator and control function models were designed from the physical perspective to examine the presented functions in the proposed framework. Experimental results demonstrate that the proposed wind power generator system achieves high performance power generation with salient power quality.

REFERENCES

VIJAYA KUMAR ITHAM B.Tech in Electrical & Electronics Engineering from QIS COLLEGE ENGG& TECH, Affiliated to JNTUK Ongole, Prakasam and M.Tech in EPE from CVSR COLLEGE OF ENGINEERING, Ghatkesar, RR district, Telangana, India. E-mail id: vijayakumar687@gmail.com

SURESH BABU GANJIKUNTA B.Tech in Electrical & Electronics Engineering in 2012 from GANDHI ACADEMY OF TECHNICAL EDUCATION, Kodad Affiliated to JNTUH, Hyderabad and M.Tech in Electrical Power systems in 2015 from CVSR COLLEGE OF ENGINEERING(Autonomous), Ghatkesar Affiliated to JNTUH, Hyderabad. E-mail id: suresh.spsm@gmail.com